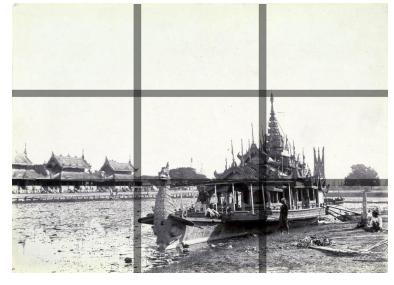


Rule-of-Thirds Detection with Interpretable Geometric Features

Tingyu Lin

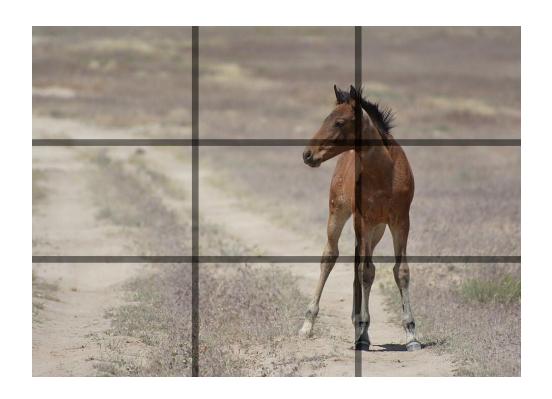
Armin Dadras

Robert Sablatnig


Markus Seidl

SUMAC @ ACM Multimedia 2025

The Rule-of-Thirds



The Rule-of-Thirds

Purpose

- Popular heuristic for visual media
 (e.g. Photography, Art History, Film studies)
- Related tasks: Aesthetic Scoring, Image Cropping, Image Composition

Difficulty

- Inherently Subjective
- Vaguely defined

Existing Research for Classification

Traditional Methods [23,24,2]

- Saliency Algorithms
- Low-Level Features
- Heuristics

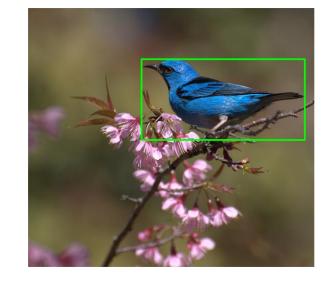
Deep Learning [10,11,35]

- End-to-End
- Saliency Features
- Extended to more classes

Idea: combine deep models with traditional methods

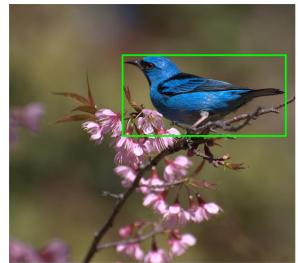
(-) No High-Level Features (Semantics)

(-) Semantic Bias (-) Opaque

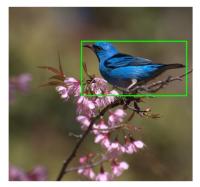

Input Image

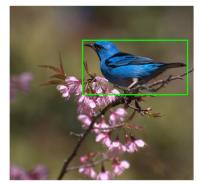
Saliency

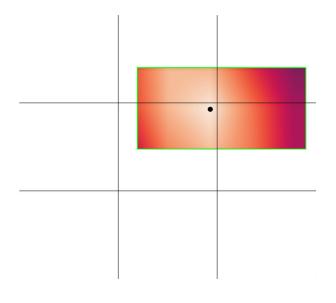
Bounding Box

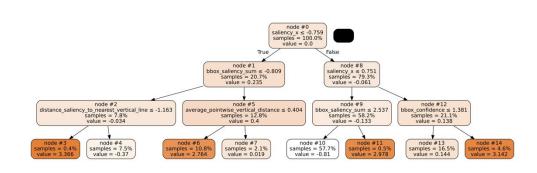


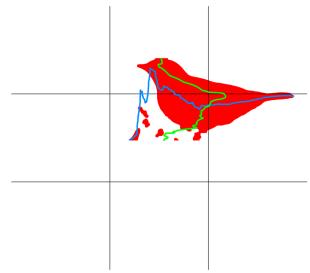
Segmentation Mask



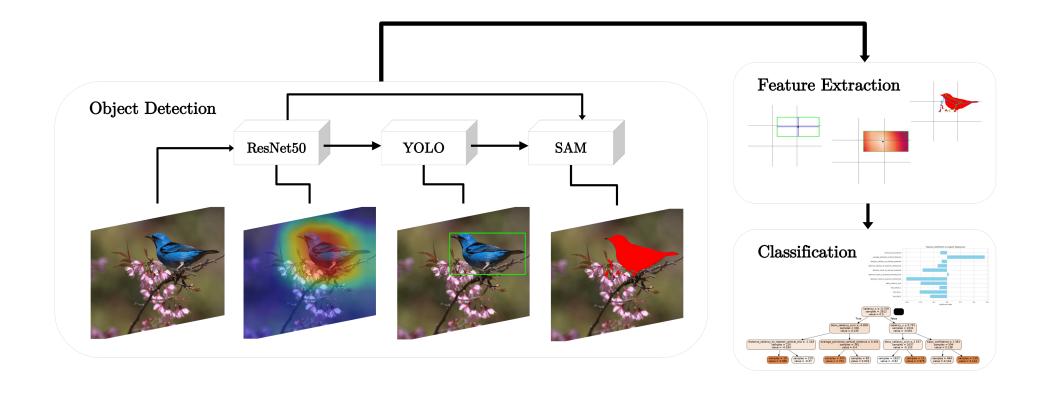








Feature Extraction


Classification

Data

3 Datasets

RoT-DS [Mai 2011]

- Binary Baseline
- Object Centric

KU-PCP [Lee 2018]

- Includes more classes
- Many Landscapes

AVT [Göring 2021]

- Multiple Labeler
- Noisy

Long Mai, Hoang Le, Yuzhen Niu, and Feng Liu. 2011. Rule of thirds detection from photograph. In 2011 IEEE international symposium on multimedia. IEEE, 91–96.

Jun-Tae Lee, Han-Ul Kim, Chul Lee, and Chang-Su Kim. 2018. Photographic composition classification and dominant geometric element detection for outdoor scenes. Journal of Visual Communication and Image Representation 55 (2018), 91–105

Steve Göring and Alexander Raake. 2021. Rule of thirds and simplicity for image aesthetics using deep neural networks. In 2021 IEEE 23rd International Workshop on Multimedia Signal Processing (MMSP). IEEE, 1–6.

Results: Baseline vs. Ours on RoT-DS

• 9.8% lower accuracy than end-to-end

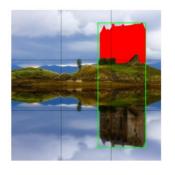
Method	Accuracy
Mai et al.	80.5%
Males et al.	77.7%
Göring et al. (SOTA)	84.1%
Proposed Method	74.3%

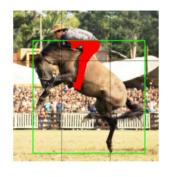
Results: Ablation Studies

- 9.8% lower accuracy than end-to-end
- Combination of all features best
 - Segmentation based features better on landscape focused dataset (KU-PCP)
 - Bounding Box based features better on object focused dataset (RoT-DS)

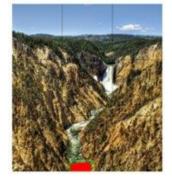
	_	
⊢ 1	Scores	
1		

Configuration	RoT-DS	KUPCP
All Features	0.748	0.835
BBox + Saliency	0.751	0.657
Segmentation Only	0.683	0.851
BBox Only	0.745	0.657


Results: Noisy Dataset (AVT)


- 9.8% lower accuracy than end-to-end
- Combination of all features best
 - Segmentation based features better on landscape focused dataset (KU-PCP)
 - Bounding Box based features better on object focused dataset (RoT-DS)
- On par with SOTA for noisy data (AVT)

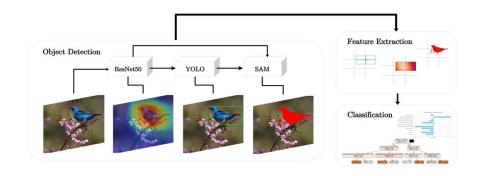
Method	Accuracy	F1-Score
Göring et al.	67.2%	0.381
Proposed Method	75.6%	0.340


Limitations

Difficult Part-Object Relations

Failing Segmentation/Saliency

Insufficient Features



Conclusion & Future Research

Conclusion

- Slightly below SOTA despite no end-toend training
- Combination of features performs best
- On par with SOTA on noisy data

Limitations due to rigidness

We suggest:

- Improved part-object modelling
- Other Saliency Algorithms
- Better Integration with end-to-end
- Adaptability and transparency instead of pure accuracy

https://github.com/ADadras/Rule-of-Thirds-Detection-with-Interpretable-Geometric-Features

Thank you

Armin Dadras, armin.dadras@{fhstp.ac.at,tuwien.ac.at}

