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The Rule-of-Thirds

Purpose
e Popular heuristic for visual media
(e.g. Photography, Art History, Film studies)
* Related tasks: Aesthetic Scoring, Image
Cropping, Image Composition

Difficulty
* Inherently Subjective
* Vaguely defined
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Existing Research for Classification

Traditional Methods [23,24,2] Deep Learning [10,11,35]
 Saliency Algorithms * End-to-End
* Low-Level Features » Saliency Features
* Heuristics * Extended to more classes

Idea: combine deep models with traditional methods

(-) No High-Level Features (-) Semantic Bias
(Semantics) (-) Opaque
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Our Method

Segmentation
Mask

Input Image Saliency Bounding Box
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Our Method
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Our Method
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Our Method

Feature Extraction Classification

node #0

saliency x = -0.759

samples = 100.0%
value = 0.0

True

node #8

saliency x = 0.751

samples = 79.3%
value = -0.061

node #1
bbox_saliency_sum = -0.809
samples = 20.7%
value = 0.235

/

node #2 node #5 node #9 node #12
distance_saliency_to_nearest_vertical_line < -1.163 average_pointwise_vertical_distance =< 0.404 bbox_saliency_sum = 2.537 bbox_confidence = 1.381
Samples = 7.8% samples = 12.8% samples = 58.2% samples = 21.1%
value = -0.034 value = 0.4 value = -0.133 value = 0.138

node #4 node #7 node #10 node #13
samples = 7.5% samples = 2.1% samples = 57.7% samples = 16.5%
value = -0.37 value = 0.019 value = -0.81 value = 0.144
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Our Method

!

Feature Extraction
Object Detection | 1 7 b

=
ResNet50 J_> YOLO _> SAM 7“

l

Classification
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Data

3 Datasets
RoT-DS [Mai 2011] KU-PCP [Lee 2018] AVT [GOring 2021]
* Binary Baseline * Includes more classes  Multiple Labeler
* Object Centric *  Many Landscapes * Noisy

Long Mai, Hoang Le, Yuzhen Niu, and Feng Liu. 2011. Rule of thirds detection from photograph. In 2011 IEEE international symp osium on multimedia.
IEEE, 91-96.

Jun-Tae Lee, Han-Ul Kim, Chul Lee, and Chang-Su Kim. 2018. Photographic composition classification and dominant geometric element detection for
outdoor scenes. Journal of Visual Communication and Image Representation 55 (2018), 91-105

Steve Goring and Alexander Raake. 2021. Rule of thirds and simplicity for image aesthetics using deep neural networks. In 2021 IEEE 23rd International

Workshop on Multimedia Signal Processing (MMSP). IEEE, 1-6. ﬂ.'.CVL
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Results: Baseline vs. OQurs on RoT-DS

* 9.8% lower accuracy than end-to-end

11

Method Accuracy
Mai et al. 80.5%
Males et al. 77.7%

Goring et al. (SOTA) 84.1%

Proposed Method

74.3%
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Results: Ablation Studies

* 9.8% lower accuracy than end-to-end

e Combination of all features best

o Segmentation based features better on
landscape focused dataset (KU-PCP)

o Bounding Box based features better on object
focused dataset (RoT-DS)
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F1 Scores
Configuration RoT-DS KUPCP
All Features 0.748 0.835
BBox + Saliency 0.751 0.657
Segmentation Only 0.683 0.851
BBox Only 0.745  0.657
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Results: Noisy Dataset (AVT)

* 9.8% lower accuracy than end-to-end

e Combination of all features best

o Segmentation based features better on
landscape focused dataset (KU-PCP)

o Bounding Box based features better on object
focused dataset (RoT-DS)

* On par with SOTA for noisy data (AVT)

Method Accuracy F1-Score

Goring et al. 67.2% 0.381
Proposed Method 75.6% 0.340
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* Difficult Part-Object Relations

* Failing Segmentation/Saliency

* |Insufficient Features
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Conclusion & Future Research

Conclusion We suggest:

* Slightly below SOTA despite no end-to-
end training

 Combination of features performs best
* On par with SOTA on noisy data

Improved part-object modelling
Other Saliency Algorithms
Better Integration with end-to-end

Adaptability and transparency instead
of pure accuracy

Limitations due to rigidness

| l

Feature Extraction

Object Detection [ 1 ‘ N
ResN YOLO SAM R |
D . . o
o https://github.com/ADadras/Rule-of-Thirds-Detection-with-
B “ B g Interpretable-Geometric-Features
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