

Composed Image Retrieval For Visual Localization: Evaluation For Architectural Contents

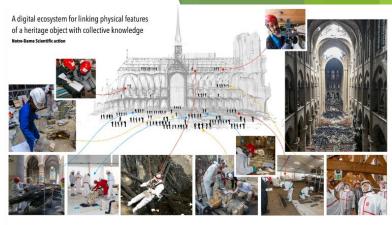
Emile Blettery¹², Valérie Gouet-Brunet¹ and Livio De Luca²

¹LaSTIG, Univ Gustave Eiffel, IGN-Geodata Paris, France

²UPR CNRS 2002 MAP, Marseille, France

Context

- Part of the N-Dame_Heritage ERC project
- Scientific work alongside the restoration of the Notre-Dame cathedral after the fire



n-Dame_Heritage | n-Dimensional analysis and memorisation ecosystem for building cathedrals of knowledge in Heritage Science

- Focus: image localization (position and pose) within a large and diverse corpus of localized images
- No other data (existing or built) than localized images
- Goal: on-the-fly integration of novel images within an ever growing collection

Dataset considered

- 10,901 images:
 - Exterior of the cathedral
 - Harmoniously distributed
 - High visual overlap

Challenges:

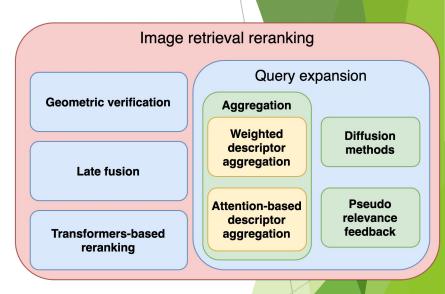
- Visual similarities
- Repeated patterns
- Multiple key elements in the background

Visual localization approaches

- Image retrieval-based approaches, our focus: (Pion et al., 2020)
 - ► CBIR in a reference dataset of localized images
 - Localization goes from pose assignment to triangulation-based pose estimation
- <u>3D-based approaches:</u> (Schönberger et al., 2016)
 - CBIR identifies reference images and thus associated/computed 3D points
 - PnP solver computes the query image's pose (Sattler et al., 2014)
 - Novel trained approaches compute direct 2D-3D matches, without reference images (Nadeem et al., 2023)
- <u>Trained</u>, all-in-one approaches:
 - Take only images as input and output a pose
 - RPR/APR still do not generalize well (especially for large areas) (Moreau et al., 2023)
 - Multi-task approaches are promising but not adapted to such datasets (Leroy et al., 2024)

Image retrieval for visual localization

- <u>Different image descriptors:</u>
 - Most powerful ones are trained, with common backbones
 - Global descriptors exploit the whole visual context
 - Local ones focus on and aggregate salient elements
- An added re-ranking step:
 - Multiple options as seen here
 - Many potential combinations
- Our selection:
 - ► How and ASMK (Tolias et al., 2020) as image descriptor for retrieval
 - Point detector and descriptor **SuperPoint** (*DeTone et al. 2018*), matched with **LightGlue** (*Lindenberger et al., 2023*) for geometric verification and subsequent pose estimation



Composed Image Retrieval (CIR)

Retrieves an image based on an initial query image and a textual modifier

- Retrieval is guided both visually and verbally
- Different types of approach to tackle this

Add two more puppies and change the breed

© Baldrati et al., 2023

CIR main approaches

- Feature modifying approaches: (Baldrati et al., 2023)
 - Textual input is taken as modifier to the visual descriptor
 - ► The visual descriptor is modified via a **combiner network**
 - Image retrieval is initiated from this modified visual descriptor
 - CLIP4CIR is the method that inspired our proposal
- Composition-based approaches: (Psomas et al., 2024)
 - Uses both textual and visual features combined with a weighting scheme
 - Could allow for pure monomodal retrieval
- Generation-based approaches: (Li et al. 2024)
 - Generates a novel image from the textual description
 - Average query and novel images descriptors for retrieval

Our proposal : CIR4Loc

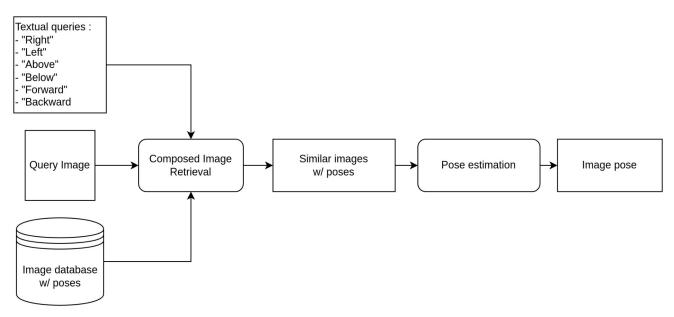
Problem statement:

- Image retrieval is an adequate base for pose estimation
- But its goal is to maximize visual similarity, i.e. to retrieve images with similar viewpoints
- The spatial configuration of retrieved images may be unsuited for pose estimation

Proposed solution:

- Composed Image Retrieval with spatial modifiers
 - relative to the image: Above, Below, Left, Right, Forward, Backward
 - absolute in the reference system: Higher, Lower, Northward, Southward, Westward, Forward
- To guide retrieval towards the best **spatially distributed** set of similar images

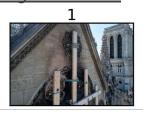
Our proposal : CIR4Loc

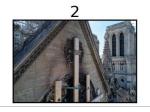


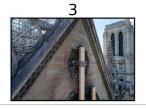
- ► Three different models are trained for each type of movement
- At retrieval time, the query image is associated to each spatial modifier
- ► The different lists are combined to obtain a spatially distributed set

CIR examples

Classical image retrieval:

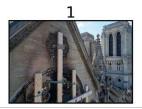


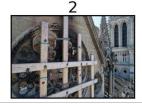


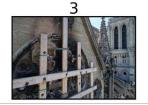


© AGP

Composed image retrieval with "Right" modifier:

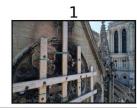


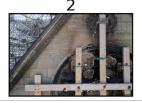


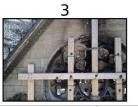


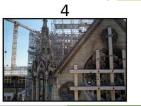


Composed image retrieval with "Left" modifier:









Evaluation framework

The localization process:

- Keypoint detection and matching with SuperPoint + LightGlue
- Relative pose estimation (between query and each reference image) using open source library Micmac
- Final pose estimation based on relative poses weighting from (Song et al., 2016)

<u>Evaluation metrics:</u>

- ► The distance between actual and estimated camera 3D positions (in meter),
- The **angle difference** (between the two orientation quaternions) (in degree)
- The direction difference (in degree), similar to the angle difference without the rotation of the camera along its aiming direction.
- Mean, median, Q1 and Q3 values

Evaluation framework

- Evaluation baselines to get a set of images for pose estimation:
 - Retrieval-based localization:
 - Basic CBIR-based approach to get the set of images
 - Retrieval optimized for visual similarity
 - How + ASMK as descriptor
 - Spatial-based localization:
 - From the visual-based retrieval, poses of the **five most similar are averaged**, excluding outliers, to get an *a priori* **pose for the query**
 - A **spatial search** retrieves images closest to this *a priori* pose
 - Their poses are filtered so their aiming direction is within 45 degrees of the aiming direction of the a priori pose
 - ► The four closest images respecting the angle constraint are chosen
- Finally, the localization process estimates the query's pose

Experiments on CIR4Loc descriptors

- CIR4Loc variants based on descriptors:
 - using CLIP as an image descriptor (as used in the CLIP4CIR inspiration)
 - using How as a global descriptor (HowG):
 - leverages How's performance
 - remains similar in terms of descriptor type (global)
 - using How as a local descriptor (HowL):
 - the local aspect increases retrieval performance greatly
 - the network is modified to use the locations of the local descriptors
 - the network assigns a binary score to each descriptor based on location as to whether or not it should be used for retrieval
 - it will thus "attract" images from the direction of the spatial modifier

Results on CIR4Loc descriptors

Preliminary results based on the average first retrieved poses using the variants of CIR4Loc on four directions ("left", "right", "above", "below")

	Dista	ance	An	gle	Direction		
	Mean	Med.	Mean	Med.	Mean	Med.	
CIR4Loc-CLIP	16.32	6.07	26.69	8.53	22.14	8.10	
CIR4Loc-HowG	4.62	1.67	9.62	2.70	8.44	2.49	
CIR4Loc-HowL	4.41	1.53	9.17	2.69	8.01	2.45	

- The local version of How outperforms all other variants
- The CLIP based-version is not at all suited for such type of contents

Experiments

- CIR4Loc vs. baselines:
 - Retrieval-based localization:
 - pure visual similarity
 - Spatial-based localization:
 - mostly spatial proximity
 - CIR4Loc-HowG based localization:
 - global representation of the How descriptor
 - CIR4Loc-HowL based localization:
 - local representation of the How descriptor

Results on CIR4Loc vs baselines

Localization performances based on different retrieval

Localization type	Distance			Angle				Direction				
	Mean	Median	Q1	Q3	Mean	Median	Q1	Q3	Mean	Median	Q1	Q3
Retrieval-based loc.	3.56	1.75	1.00	3.37	10.24	4.43	1.64	11.48	8.64	3.93	1.29	10.35
Spatial-based loc.	4.24	2.29	1.31	4.22	9.08	2.81	0.82	9.42	7.42	2.38	0.62	7.99
CIR4Loc-HowG	5.11	2.14	1.06	4.89	10.85	4.16	1.47	11.69	9.08	3.63	1.16	10.37
CIR4Loc-HowL	4.11	1.45	0.79	2.91	<u>9.51</u>	3.88	<u>1.29</u>	10.23	7.86	<u>3.41</u>	<u>1.01</u>	<u>8.79</u>

- A local descriptor is essential (CIR4Loc-HowG is worse than classical retrieval)
- For viewpoint estimation, up to Q3, CIR4Loc-HowL is the best, indicating a real improvement in cases where CIR performs correctly
- For viewing direction, spatial-based localization is better but CIR4Loc-HowL outperforms retrieval-based localization
- CIR for localization is quite promising

Conclusion & Perspectives

- For image based localization, the retrieval step is crucial
- **BUT** CBIR goals do not align with pose estimation requirements
- Proposed solution : CIR4Loc, composed image retrieval with spatial modifiers
- To guide retrieval towards a **spatially aware set of images**
- Promising results highlighting that <u>image retrieval should</u> be driven by the characteristics of the application
- Perspectives:
 - Integrate CIR4Loc in end-to-end localization pipelines/systems
 - Compare CIR4Loc to other type of approaches (3D, all-in-one)
 - Evaluate CIR4Loc on other heritage datasets challenging for

© AGP

- 11

References

- Baldrati, Alberto, et al. "Composed image retrieval using contrastive learning and task-oriented clip-based features." ACM Transactions on Multimedia Computing, Communications and Applications 20.3 (2023): 1-24.
- DeTone, Daniel, Tomasz Malisiewicz, and Andrew Rabinovich. "Superpoint: Self-supervised interest point detection and description." Proceedings of the IEEE conference on computer vision and pattern recognition workshops. 2018.
- Leroy, Vincent, Yohann Cabon, and Jérôme Revaud. "Grounding image matching in 3d with mast3r." European Conference on Computer Vision. Cham: Springer Nature Switzerland, 2024.
- Li, You, Fan Ma, and Yi Yang. "Imagine and seek: Improving composed image retrieval with an imagined proxy."
 Proceedings of the Computer Vision and Pattern Recognition Conference. 2025.
- Lindenberger, Philipp, Paul-Edouard Sarlin, and Marc Pollefeys. "Lightglue: Local feature matching at light speed." Proceedings of the IEEE/CVF international conference on computer vision. 2023.
- Moreau, Arthur, et al. "Crossfire: Camera relocalization on self-supervised features from an implicit representation." Proceedings of the IEEE/CVF International Conference on Computer Vision. 2023.
- Nadeem, Uzair, et al. "Cross domain 2D-3D descriptor matching for unconstrained 6-DOF pose estimation." Pattern Recognition 142 (2023): 109655.
- Pion, Noé, et al. "Benchmarking image retrieval for visual localization." 2020 International Conference on 3D Vision (3DV). IEEE, 2020.
- Psomas, Bill, et al. "Composed image retrieval for remote sensing." IGARSS 2024-2024 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2024.
- Sattler, Torsten Chris Sweeney, and Marc Pollefeys. 2014. On sampling focal length values to solve the absolute pose problem. In European Conference on Computer Vision.
- **Schonberger**, Johannes L., and Jan-Michael Frahm. "Structure-from-motion revisited." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.
- Tolias, Giorgos, Tomas Jenicek, and Ondřej Chum. "Learning and aggregating deep local descriptors for instance-level recognition." European Conference on Computer Vision. Cham: Springer International Publishing, 2020.